Computer Science > Computer Science and Game Theory
[Submitted on 22 Apr 2024]
Title:Finite-memory Strategies for Almost-sure Energy-MeanPayoff Objectives in MDPs
View PDFAbstract:We consider finite-state Markov decision processes with the combined Energy-MeanPayoff objective. The controller tries to avoid running out of energy while simultaneously attaining a strictly positive mean payoff in a second dimension. We show that finite memory suffices for almost surely winning strategies for the Energy-MeanPayoff objective. This is in contrast to the closely related Energy-Parity objective, where almost surely winning strategies require infinite memory in general. We show that exponential memory is sufficient (even for deterministic strategies) and necessary (even for randomized strategies) for almost surely winning Energy-MeanPayoff. The upper bound holds even if the strictly positive mean payoff part of the objective is generalized to multidimensional strictly positive mean payoff. Finally, it is decidable in pseudo-polynomial time whether an almost surely winning strategy exists.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.