Computer Science > Cryptography and Security
[Submitted on 21 Apr 2024 (v1), last revised 23 Apr 2024 (this version, v2)]
Title:Faster Post-Quantum TLS 1.3 Based on ML-KEM: Implementation and Assessment
View PDF HTML (experimental)Abstract:TLS is extensively utilized for secure data transmission over networks. However, with the advent of quantum computers, the security of TLS based on traditional public-key cryptography is under threat. To counter quantum threats, it is imperative to integrate post-quantum algorithms into TLS. Most PQ-TLS research focuses on integration and evaluation, but few studies address the improvement of PQ-TLS performance by optimizing PQC implementation. For the TLS protocol, handshake performance is crucial, and for post-quantum TLS (PQ-TLS) the performance of post-quantum key encapsulation mechanisms (KEMs) directly impacts handshake performance. In this work, we explore the impact of post-quantum KEMs on PQ-TLS performance. We explore how to improve ML-KEM performance using the latest Intel's Advanced Vector Extensions instruction set AVX-512. We detail a spectrum of techniques devised to parallelize polynomial multiplication, modular reduction, and other computationally intensive modules within ML-KEM. Our optimized ML-KEM implementation achieves up to 1.64x speedup compared to the latest AVX2 implementation. Furthermore, we introduce a novel batch key generation method for ML-KEM that can seamlessly integrate into the TLS protocols. The batch method accelerates the key generation procedure by 3.5x to 4.9x. We integrate the optimized AVX-512 implementation of ML-KEM into TLS 1.3, and assess handshake performance under both PQ-only and hybrid modes. The assessment demonstrates that our faster ML-KEM implementation results in a higher number of TLS 1.3 handshakes per second under both modes. Additionally, we revisit two IND-1-CCA KEM constructions discussed in Eurocrypt22 and Asiacrypt23. Besides, we implement them based on ML-KEM and integrate the one of better performance into TLS 1.3 with benchmarks.
Submission history
From: Jieyu Zheng [view email][v1] Sun, 21 Apr 2024 05:59:04 UTC (875 KB)
[v2] Tue, 23 Apr 2024 03:53:09 UTC (878 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.