Computer Science > Artificial Intelligence
[Submitted on 19 Apr 2024]
Title:Mapping Social Choice Theory to RLHF
View PDF HTML (experimental)Abstract:Recent work on the limitations of using reinforcement learning from human feedback (RLHF) to incorporate human preferences into model behavior often raises social choice theory as a reference point. Social choice theory's analysis of settings such as voting mechanisms provides technical infrastructure that can inform how to aggregate human preferences amid disagreement. We analyze the problem settings of social choice and RLHF, identify key differences between them, and discuss how these differences may affect the RLHF interpretation of well-known technical results in social choice.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.