Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Mar 2024 (v1), last revised 27 Mar 2024 (this version, v2)]
Title:Physical 3D Adversarial Attacks against Monocular Depth Estimation in Autonomous Driving
View PDF HTML (experimental)Abstract:Deep learning-based monocular depth estimation (MDE), extensively applied in autonomous driving, is known to be vulnerable to adversarial attacks. Previous physical attacks against MDE models rely on 2D adversarial patches, so they only affect a small, localized region in the MDE map but fail under various viewpoints. To address these limitations, we propose 3D Depth Fool (3D$^2$Fool), the first 3D texture-based adversarial attack against MDE models. 3D$^2$Fool is specifically optimized to generate 3D adversarial textures agnostic to model types of vehicles and to have improved robustness in bad weather conditions, such as rain and fog. Experimental results validate the superior performance of our 3D$^2$Fool across various scenarios, including vehicles, MDE models, weather conditions, and viewpoints. Real-world experiments with printed 3D textures on physical vehicle models further demonstrate that our 3D$^2$Fool can cause an MDE error of over 10 meters.
Submission history
From: Junhao Zheng [view email][v1] Tue, 26 Mar 2024 01:06:47 UTC (22,755 KB)
[v2] Wed, 27 Mar 2024 08:23:09 UTC (22,754 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.