Computer Science > Machine Learning
[Submitted on 2 Jan 2024]
Title:SUDO: a framework for evaluating clinical artificial intelligence systems without ground-truth annotations
View PDF HTML (experimental)Abstract:A clinical artificial intelligence (AI) system is often validated on a held-out set of data which it has not been exposed to before (e.g., data from a different hospital with a distinct electronic health record system). This evaluation process is meant to mimic the deployment of an AI system on data in the wild; those which are currently unseen by the system yet are expected to be encountered in a clinical setting. However, when data in the wild differ from the held-out set of data, a phenomenon referred to as distribution shift, and lack ground-truth annotations, it becomes unclear the extent to which AI-based findings can be trusted on data in the wild. Here, we introduce SUDO, a framework for evaluating AI systems without ground-truth annotations. SUDO assigns temporary labels to data points in the wild and directly uses them to train distinct models, with the highest performing model indicative of the most likely label. Through experiments with AI systems developed for dermatology images, histopathology patches, and clinical reports, we show that SUDO can be a reliable proxy for model performance and thus identify unreliable predictions. We also demonstrate that SUDO informs the selection of models and allows for the previously out-of-reach assessment of algorithmic bias for data in the wild without ground-truth annotations. The ability to triage unreliable predictions for further inspection and assess the algorithmic bias of AI systems can improve the integrity of research findings and contribute to the deployment of ethical AI systems in medicine.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.