Computer Science > Computation and Language
[Submitted on 21 Mar 2024]
Title:More than Just Statistical Recurrence: Human and Machine Unsupervised Learning of Māori Word Segmentation across Morphological Processes
View PDF HTML (experimental)Abstract:Non-Māori-speaking New Zealanders (NMS)are able to segment Māori words in a highlysimilar way to fluent speakers (Panther et al.,2024). This ability is assumed to derive through the identification and extraction of statistically recurrent forms. We examine this assumption by asking how NMS segmentations compare to those produced by Morfessor, an unsupervised machine learning model that operates based on statistical recurrence, across words formed by a variety of morphological processes. Both NMS and Morfessor succeed in segmenting words formed by concatenative processes (compounding and affixation without allomorphy), but NMS also succeed for words that invoke templates (reduplication and allomorphy) and other cues to morphological structure, implying that their learning process is sensitive to more than just statistical recurrence.
Submission history
From: Ashvini Varatharaj [view email][v1] Thu, 21 Mar 2024 14:51:51 UTC (173 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.