Computer Science > Cryptography and Security
[Submitted on 5 Mar 2024 (v1), last revised 4 Apr 2024 (this version, v2)]
Title:Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks
View PDF HTML (experimental)Abstract:Recent studies have revealed that federated learning (FL), once considered secure due to clients not sharing their private data with the server, is vulnerable to attacks such as client-side training data distribution inference, where a malicious client can recreate the victim's data. While various countermeasures exist, they are not practical, often assuming server access to some training data or knowledge of label distribution before the attack.
In this work, we bridge the gap by proposing InferGuard, a novel Byzantine-robust aggregation rule aimed at defending against client-side training data distribution inference attacks. In our proposed InferGuard, the server first calculates the coordinate-wise median of all the model updates it receives. A client's model update is considered malicious if it significantly deviates from the computed median update. We conduct a thorough evaluation of our proposed InferGuard on five benchmark datasets and perform a comparison with ten baseline methods. The results of our experiments indicate that our defense mechanism is highly effective in protecting against client-side training data distribution inference attacks, even against strong adaptive attacks. Furthermore, our method substantially outperforms the baseline methods in various practical FL scenarios.
Submission history
From: Xu Yichang [view email][v1] Tue, 5 Mar 2024 17:41:35 UTC (123 KB)
[v2] Thu, 4 Apr 2024 05:23:39 UTC (130 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.