Computer Science > Machine Learning
[Submitted on 4 Feb 2024 (v1), last revised 17 Dec 2024 (this version, v2)]
Title:PROSAC: Provably Safe Certification for Machine Learning Models under Adversarial Attacks
View PDF HTML (experimental)Abstract:It is widely known that state-of-the-art machine learning models, including vision and language models, can be seriously compromised by adversarial perturbations. It is therefore increasingly relevant to develop capabilities to certify their performance in the presence of the most effective adversarial attacks. Our paper offers a new approach to certify the performance of machine learning models in the presence of adversarial attacks with population level risk guarantees. In particular, we introduce the notion of $(\alpha,\zeta)$-safe machine learning model. We propose a hypothesis testing procedure, based on the availability of a calibration set, to derive statistical guarantees providing that the probability of declaring that the adversarial (population) risk of a machine learning model is less than $\alpha$ (i.e. the model is safe), while the model is in fact unsafe (i.e. the model adversarial population risk is higher than $\alpha$), is less than $\zeta$. We also propose Bayesian optimization algorithms to determine efficiently whether a machine learning model is $(\alpha,\zeta)$-safe in the presence of an adversarial attack, along with statistical guarantees. We apply our framework to a range of machine learning models - including various sizes of vision Transformer (ViT) and ResNet models - impaired by a variety of adversarial attacks, such as PGDAttack, MomentumAttack, GenAttack and BanditAttack, to illustrate the operation of our approach. Importantly, we show that ViT's are generally more robust to adversarial attacks than ResNets, and large models are generally more robust than smaller models. Our approach goes beyond existing empirical adversarial risk-based certification guarantees. It formulates rigorous (and provable) performance guarantees that can be used to satisfy regulatory requirements mandating the use of state-of-the-art technical tools.
Submission history
From: Chen Feng [view email][v1] Sun, 4 Feb 2024 22:45:20 UTC (2,546 KB)
[v2] Tue, 17 Dec 2024 11:28:49 UTC (151 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.