Computer Science > Machine Learning
[Submitted on 29 Jan 2024]
Title:TQCompressor: improving tensor decomposition methods in neural networks via permutations
View PDFAbstract:We introduce TQCompressor, a novel method for neural network model compression with improved tensor decompositions. We explore the challenges posed by the computational and storage demands of pre-trained language models in NLP tasks and propose a permutation-based enhancement to Kronecker decomposition. This enhancement makes it possible to reduce loss in model expressivity which is usually associated with factorization. We demonstrate this method applied to the GPT-2$_{small}$. The result of the compression is TQCompressedGPT-2 model, featuring 81 mln. parameters compared to 124 mln. in the GPT-2$_{small}$. We make TQCompressedGPT-2 publicly available. We further enhance the performance of the TQCompressedGPT-2 through a training strategy involving multi-step knowledge distillation, using only a 3.1% of the OpenWebText. TQCompressedGPT-2 surpasses DistilGPT-2 and KnGPT-2 in comparative evaluations, marking an advancement in the efficient and effective deployment of models in resource-constrained environments.
Submission history
From: Michael Perelshtein R. [view email][v1] Mon, 29 Jan 2024 18:07:56 UTC (234 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.