Computer Science > Data Structures and Algorithms
[Submitted on 24 Jan 2024]
Title:Separating $k$-Median from the Supplier Version
View PDF HTML (experimental)Abstract:Given a metric space $(V, d)$ along with an integer $k$, the $k$-Median problem asks to open $k$ centers $C \subseteq V$ to minimize $\sum_{v \in V} d(v, C)$, where $d(v, C) := \min_{c \in C} d(v, c)$. While the best-known approximation ratio of $2.613$ holds for the more general supplier version where an additional set $F \subseteq V$ is given with the restriction $C \subseteq F$, the best known hardness for these two versions are $1+1/e \approx 1.36$ and $1+2/e \approx 1.73$ respectively, using the same reduction from Max $k$-Coverage. We prove the following two results separating them.
First, we show a $1.546$-parameterized approximation algorithm that runs in time $f(k) n^{O(1)}$. Since $1+2/e$ is proved to be the optimal approximation ratio for the supplier version in the parameterized setting, this result separates the original $k$-Median from the supplier version.
Next, we prove a $1.416$-hardness for polynomial-time algorithms assuming the Unique Games Conjecture. This is achieved via a new fine-grained hardness of Max-$k$-Coverage for small set sizes.
Our upper bound and lower bound are derived from almost the same expression, with the only difference coming from the well-known separation between the powers of LP and SDP on (hypergraph) vertex cover.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.