Quantum Physics
[Submitted on 22 Jan 2024 (v1), last revised 20 Oct 2024 (this version, v2)]
Title:Exponential quantum advantages for practical non-Hermitian eigenproblems
View PDFAbstract:While non-Hermitian physics has attracted considerable attention, current studies are limited to small or classically solvable systems. Quantum computing, as a powerful eigensolver, have predominantly been applied to Hermitian domain, leaving their potential for studying non-Hermitian problems largely unexplored. We extend the power of quantum computing to general non-Hermitian eigenproblems. Our approach works for finding eigenvalues without extra constrains, or eigenvalues closest to specified points or lines, thus extending results for ground energy and energy gap problems for Hermitian matrices. Our algorithms have broad applications, and as examples, we consider two central problems in non-Hermitian physics. Firstly, our approach is the first to offer an efficient quantum solution to the witness of spontaneous $PT$-symmetry breaking, and provide provable, exponential quantum advantage. Secondly, our approach enables the estimation of Liouvillian gap, which is crucial for characterizing relaxation times. Our general approach can also find applications in many other areas, such as the study of Markovian stochastic processes. These results underscore the significance of our quantum algorithms for addressing practical eigenproblems across various disciplines.
Submission history
From: Xiao-Ming Zhang [view email][v1] Mon, 22 Jan 2024 16:29:08 UTC (233 KB)
[v2] Sun, 20 Oct 2024 02:58:55 UTC (20,943 KB)
Current browse context:
quant-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.