Computer Science > Machine Learning
[Submitted on 18 Dec 2023]
Title:Estimation of individual causal effects in network setup for multiple treatments
View PDF HTML (experimental)Abstract:We study the problem of estimation of Individual Treatment Effects (ITE) in the context of multiple treatments and networked observational data. Leveraging the network information, we aim to utilize hidden confounders that may not be directly accessible in the observed data, thereby enhancing the practical applicability of the strong ignorability assumption. To achieve this, we first employ Graph Convolutional Networks (GCN) to learn a shared representation of the confounders. Then, our approach utilizes separate neural networks to infer potential outcomes for each treatment. We design a loss function as a weighted combination of two components: representation loss and Mean Squared Error (MSE) loss on the factual outcomes. To measure the representation loss, we extend existing metrics such as Wasserstein and Maximum Mean Discrepancy (MMD) from the binary treatment setting to the multiple treatments scenario. To validate the effectiveness of our proposed methodology, we conduct a series of experiments on the benchmark datasets such as BlogCatalog and Flickr. The experimental results consistently demonstrate the superior performance of our models when compared to baseline methods.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.