Statistics > Computation
[Submitted on 16 Nov 2023]
Title:Unbiased and Multilevel Methods for a Class of Diffusions Partially Observed via Marked Point Processes
View PDFAbstract:In this article we consider the filtering problem associated to partially observed diffusions, with observations following a marked point process. In the model, the data form a point process with observation times that have its intensity driven by a diffusion, with the associated marks also depending upon the diffusion process. We assume that one must resort to time-discretizing the diffusion process and develop particle and multilevel particle filters to recursively approximate the filter. In particular, we prove that our multilevel particle filter can achieve a mean square error (MSE) of $\mathcal{O}(\epsilon^2)$ ($\epsilon>0$ and arbitrary) with a cost of $\mathcal{O}(\epsilon^{-2.5})$ versus using a particle filter which has a cost of $\mathcal{O}(\epsilon^{-3})$ to achieve the same MSE. We then show how this methodology can be extended to give unbiased (that is with no time-discretization error) estimators of the filter, which are proved to have finite variance and with high-probability have finite cost. Finally, we extend our methodology to the problem of online static-parameter estimation.
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.