Computer Science > Computation and Language
[Submitted on 16 Nov 2023 (v1), last revised 24 Jun 2024 (this version, v3)]
Title:Reducing Privacy Risks in Online Self-Disclosures with Language Models
View PDF HTML (experimental)Abstract:Self-disclosure, while being common and rewarding in social media interaction, also poses privacy risks. In this paper, we take the initiative to protect the user-side privacy associated with online self-disclosure through detection and abstraction. We develop a taxonomy of 19 self-disclosure categories and curate a large corpus consisting of 4.8K annotated disclosure spans. We then fine-tune a language model for detection, achieving over 65% partial span F$_1$. We further conduct an HCI user study, with 82% of participants viewing the model positively, highlighting its real-world applicability. Motivated by the user feedback, we introduce the task of self-disclosure abstraction, which is rephrasing disclosures into less specific terms while preserving their utility, e.g., "Im 16F" to "I'm a teenage girl". We explore various fine-tuning strategies, and our best model can generate diverse abstractions that moderately reduce privacy risks while maintaining high utility according to human evaluation. To help users in deciding which disclosures to abstract, we present a task of rating their importance for context understanding. Our fine-tuned model achieves 80% accuracy, on-par with GPT-3.5. Given safety and privacy considerations, we will only release our corpus and models to researcher who agree to the ethical guidelines outlined in Ethics Statement.
Submission history
From: Yao Dou [view email][v1] Thu, 16 Nov 2023 03:28:43 UTC (8,370 KB)
[v2] Tue, 20 Feb 2024 01:04:04 UTC (8,474 KB)
[v3] Mon, 24 Jun 2024 02:11:44 UTC (8,474 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.