Computer Science > Computer Vision and Pattern Recognition
[Submitted on 9 Nov 2023]
Title:Dual Pipeline Style Transfer with Input Distribution Differentiation
View PDFAbstract:The color and texture dual pipeline architecture (CTDP) suppresses texture representation and artifacts through masked total variation loss (Mtv), and further experiments have shown that smooth input can almost completely eliminate texture representation. We have demonstrated through experiments that smooth input is not the key reason for removing texture representations, but rather the distribution differentiation of the training dataset. Based on this, we propose an input distribution differentiation training strategy (IDD), which forces the generation of textures to be completely dependent on the noise distribution, while the smooth distribution will not produce textures at all. Overall, our proposed distribution differentiation training strategy allows for two pre-defined input distributions to be responsible for two generation tasks, with noise distribution responsible for texture generation and smooth distribution responsible for color smooth transfer. Finally, we choose a smooth distribution as the input for the forward inference stage to completely eliminate texture representations and artifacts in color transfer tasks.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.