Computer Science > Neural and Evolutionary Computing
[Submitted on 25 Oct 2023 (v1), last revised 27 Apr 2024 (this version, v2)]
Title:Multi-Task Wavelength-Multiplexed Reservoir Computing Using a Silicon Microring Resonator
View PDF HTML (experimental)Abstract:Among the promising advantages of photonic computing over conventional computing architectures is the potential to increase computing efficiency through massive parallelism by using the many degrees of freedom provided by photonics. Here, we numerically demonstrate the simultaneous use of time and frequency (equivalently wavelength) multiplexing to solve three independent tasks at the same time on the same photonic circuit. In particular, we consider a microring-based time-delay reservoir computing (TDRC) scheme that simultaneously solves three tasks: Time-series prediction, classification, and wireless channel equalization. The scheme relies on time-division multiplexing to avoid the necessity of multiple physical nonlinear nodes, while the tasks are parallelized using wavelength division multiplexing (WDM). The input data modulated on each optical channel is mapped to a higher dimensional space by the nonlinear dynamics of the silicon microring cavity. The carrier wavelength and input power assigned to each optical channel have a high influence on the performance of its respective task. When all tasks operate under the same wavelength/power conditions, our results show that the computing nature of each task is the deciding factor of the level of performance achievable. However, it is possible to achieve good performance for all tasks simultaneously by optimizing the parameters of each optical channel. The variety of applications covered by the tasks shows the versatility of the proposed photonic TDRC scheme. Overall, this work provides insight into the potential of WDM-based schemes for improving the computing capabilities of reservoir computing schemes.
Submission history
From: Bernard Jonathan Giron Castro [view email][v1] Wed, 25 Oct 2023 12:24:56 UTC (385 KB)
[v2] Sat, 27 Apr 2024 18:25:51 UTC (823 KB)
Current browse context:
cs.NE
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.