Computer Science > Machine Learning
[Submitted on 20 Oct 2023 (v1), last revised 24 Nov 2023 (this version, v4)]
Title:Physics-Informed Graph Convolutional Networks: Towards a generalized framework for complex geometries
View PDFAbstract:Since the seminal work of [9] and their Physics-Informed neural networks (PINNs), many efforts have been conducted towards solving partial differential equations (PDEs) with Deep Learning models. However, some challenges remain, for instance the extension of such models to complex three-dimensional geometries, and a study on how such approaches could be combined to classical numerical solvers. In this work, we justify the use of graph neural networks for these problems, based on the similarity between these architectures and the meshes used in traditional numerical techniques for solving partial differential equations. After proving an issue with the Physics-Informed framework for complex geometries, during the computation of PDE residuals, an alternative procedure is proposed, by combining classical numerical solvers and the Physics-Informed framework. Finally, we propose an implementation of this approach, that we test on a three-dimensional problem on an irregular geometry.
Submission history
From: Marien Chenaud [view email][v1] Fri, 20 Oct 2023 09:46:12 UTC (277 KB)
[v2] Tue, 24 Oct 2023 07:30:31 UTC (277 KB)
[v3] Wed, 8 Nov 2023 15:13:39 UTC (277 KB)
[v4] Fri, 24 Nov 2023 13:33:51 UTC (277 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.