Computer Science > Machine Learning
[Submitted on 19 Oct 2023]
Title:A Multi-Stage Temporal Convolutional Network for Volleyball Jumps Classification Using a Waist-Mounted IMU
View PDFAbstract:Monitoring the number of jumps for volleyball players during training or a match can be crucial to prevent injuries, yet the measurement requires considerable workload and cost using traditional methods such as video analysis. Also, existing methods do not provide accurate differentiation between different types of jumps. In this study, an unobtrusive system with a single inertial measurement unit (IMU) on the waist was proposed to recognize the types of volleyball jumps. A Multi-Layer Temporal Convolutional Network (MS-TCN) was applied for sample-wise classification. The model was evaluated on ten volleyball players and twenty-six volleyball players, during a lab session with a fixed protocol of jumping and landing tasks, and during four volleyball training sessions, respectively. The MS-TCN model achieved better performance than a state-of-the-art deep learning model but with lower computational cost. In the lab sessions, most jump counts showed small differences between the predicted jumps and video-annotated jumps, with an overall count showing a Limit of Agreement (LoA) of 0.1+-3.40 (r=0.884). For comparison, the proposed algorithm showed slightly worse results than VERT (a commercial jumping assessment device) with a LoA of 0.1+-2.08 (r=0.955) but the differences were still within a comparable range. In the training sessions, the recognition of three types of jumps exhibited a mean difference from observation of less than 10 jumps: block, smash, and overhead serve. These results showed the potential of using a single IMU to recognize the types of volleyball jumps. The sample-wise architecture provided high resolution of recognition and the MS-TCN required fewer parameters to train compared with state-of-the-art models.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.