Computer Science > Computation and Language
[Submitted on 19 Oct 2023]
Title:Character-level Chinese Backpack Language Models
View PDFAbstract:The Backpack is a Transformer alternative shown to improve interpretability in English language modeling by decomposing predictions into a weighted sum of token sense components. However, Backpacks' reliance on token-defined meaning raises questions as to their potential for languages other than English, a language for which subword tokenization provides a reasonable approximation for lexical items. In this work, we train, evaluate, interpret, and control Backpack language models in character-tokenized Chinese, in which words are often composed of many characters. We find that our (134M parameter) Chinese Backpack language model performs comparably to a (104M parameter) Transformer, and learns rich character-level meanings that log-additively compose to form word meanings. In SimLex-style lexical semantic evaluations, simple averages of Backpack character senses outperform input embeddings from a Transformer. We find that complex multi-character meanings are often formed by using the same per-character sense weights consistently across context. Exploring interpretability-through control, we show that we can localize a source of gender bias in our Backpacks to specific character senses and intervene to reduce the bias.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.