Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Oct 2023 (v1), last revised 13 Apr 2024 (this version, v4)]
Title:EfficientDM: Efficient Quantization-Aware Fine-Tuning of Low-Bit Diffusion Models
View PDF HTML (experimental)Abstract:Diffusion models have demonstrated remarkable capabilities in image synthesis and related generative tasks. Nevertheless, their practicality for real-world applications is constrained by substantial computational costs and latency issues. Quantization is a dominant way to compress and accelerate diffusion models, where post-training quantization (PTQ) and quantization-aware training (QAT) are two main approaches, each bearing its own properties. While PTQ exhibits efficiency in terms of both time and data usage, it may lead to diminished performance in low bit-width. On the other hand, QAT can alleviate performance degradation but comes with substantial demands on computational and data resources. In this paper, we introduce a data-free and parameter-efficient fine-tuning framework for low-bit diffusion models, dubbed EfficientDM, to achieve QAT-level performance with PTQ-like efficiency. Specifically, we propose a quantization-aware variant of the low-rank adapter (QALoRA) that can be merged with model weights and jointly quantized to low bit-width. The fine-tuning process distills the denoising capabilities of the full-precision model into its quantized counterpart, eliminating the requirement for training data. We also introduce scale-aware optimization and temporal learned step-size quantization to further enhance performance. Extensive experimental results demonstrate that our method significantly outperforms previous PTQ-based diffusion models while maintaining similar time and data efficiency. Specifically, there is only a 0.05 sFID increase when quantizing both weights and activations of LDM-4 to 4-bit on ImageNet 256x256. Compared to QAT-based methods, our EfficientDM also boasts a 16.2x faster quantization speed with comparable generation quality. Code is available at \href{this https URL}{this hrl}.
Submission history
From: Yefei He [view email][v1] Thu, 5 Oct 2023 02:51:53 UTC (6,231 KB)
[v2] Sat, 7 Oct 2023 05:45:47 UTC (1 KB) (withdrawn)
[v3] Thu, 12 Oct 2023 01:13:41 UTC (6,219 KB)
[v4] Sat, 13 Apr 2024 07:33:57 UTC (12,788 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.