Computer Science > Human-Computer Interaction
[Submitted on 2 Oct 2023 (v1), last revised 4 Mar 2024 (this version, v2)]
Title:GenQuery: Supporting Expressive Visual Search with Generative Models
View PDF HTML (experimental)Abstract:Designers rely on visual search to explore and develop ideas in early design stages. However, designers can struggle to identify suitable text queries to initiate a search or to discover images for similarity-based search that can adequately express their intent. We propose GenQuery, a novel system that integrates generative models into the visual search process. GenQuery can automatically elaborate on users' queries and surface concrete search directions when users only have abstract ideas. To support precise expression of search intents, the system enables users to generatively modify images and use these in similarity-based search. In a comparative user study (N=16), designers felt that they could more accurately express their intents and find more satisfactory outcomes with GenQuery compared to a tool without generative features. Furthermore, the unpredictability of generations allowed participants to uncover more diverse outcomes. By supporting both convergence and divergence, GenQuery led to a more creative experience.
Submission history
From: Kihoon Son [view email][v1] Mon, 2 Oct 2023 15:38:06 UTC (7,922 KB)
[v2] Mon, 4 Mar 2024 05:18:43 UTC (7,506 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.