Computer Science > Databases
[Submitted on 2 Oct 2023 (v1), last revised 26 Oct 2023 (this version, v2)]
Title:Rel2Graph: Automated Mapping From Relational Databases to a Unified Property Knowledge Graph
View PDFAbstract:Although a few approaches are proposed to convert relational databases to graphs, there is a genuine lack of systematic evaluation across a wider spectrum of databases. Recognising the important issue of query mapping, this paper proposes an approach Rel2Graph, an automatic knowledge graph construction (KGC) approach from an arbitrary number of relational databases. Our approach also supports the mapping of conjunctive SQL queries into pattern-based NoSQL queries. We evaluate our proposed approach on two widely used relational database-oriented datasets: Spider and KaggleDBQA benchmarks for semantic parsing. We employ the execution accuracy (EA) metric to quantify the proportion of results by executing the NoSQL queries on the property knowledge graph we construct that aligns with the results of SQL queries performed on relational databases. Consequently, the counterpart property knowledge graph of benchmarks with high accuracy and integrity can be ensured. The code and data will be publicly available. The code and data are available at github\footnote{this https URL}.
Submission history
From: Ziyu Zhao [view email][v1] Mon, 2 Oct 2023 10:46:51 UTC (2,889 KB)
[v2] Thu, 26 Oct 2023 08:35:07 UTC (2,758 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.