Statistics > Computation
[Submitted on 24 Sep 2023]
Title:Bayesian Parameter Inference for Partially Observed Diffusions using Multilevel Stochastic Runge-Kutta Methods
View PDFAbstract:We consider the problem of Bayesian estimation of static parameters associated to a partially and discretely observed diffusion process. We assume that the exact transition dynamics of the diffusion process are unavailable, even up-to an unbiased estimator and that one must time-discretize the diffusion process. In such scenarios it has been shown how one can introduce the multilevel Monte Carlo method to reduce the cost to compute posterior expected values of the parameters for a pre-specified mean square error (MSE). These afore-mentioned methods rely on upon the Euler-Maruyama discretization scheme which is well-known in numerical analysis to have slow convergence properties. We adapt stochastic Runge-Kutta (SRK) methods for Bayesian parameter estimation of static parameters for diffusions. This can be implemented in high-dimensions of the diffusion and seemingly under-appreciated in the uncertainty quantification and statistics fields. For a class of diffusions and SRK methods, we consider the estimation of the posterior expectation of the parameters. We prove that to achieve a MSE of $\mathcal{O}(\epsilon^2)$, for $\epsilon>0$ given, the associated work is $\mathcal{O}(\epsilon^{-2})$. Whilst the latter is achievable for the Milstein scheme, this method is often not applicable for diffusions in dimension larger than two. We also illustrate our methodology in several numerical examples.
Current browse context:
stat.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.