Computer Science > Computation and Language
[Submitted on 17 Sep 2023 (v1), last revised 22 Mar 2024 (this version, v2)]
Title:Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles
View PDF HTML (experimental)Abstract:Previous research in multi-document news summarization has typically concentrated on collating information that all sources agree upon. However, the summarization of diverse information dispersed across multiple articles about an event remains underexplored. In this paper, we propose a new task of summarizing diverse information encountered in multiple news articles encompassing the same event. To facilitate this task, we outlined a data collection schema for identifying diverse information and curated a dataset named DiverseSumm. The dataset includes 245 news stories, with each story comprising 10 news articles and paired with a human-validated reference. Next, to enable consistent automatic evaluation, we conducted a comprehensive analysis to pinpoint the position and verbosity biases when utilizing Large Language Model (LLM)-based metrics for evaluating the coverage and faithfulness of summaries. Through correlation analyses, we outline the best practices for effectively using automatic LLM-based metrics on the DiverseSumm dataset. Finally, we study how LLMs summarize multiple news articles by analyzing which type of diverse information LLMs are capable of identifying. Our analyses suggest that despite the extraordinary capabilities of LLMs in single-document summarization, the proposed task remains a complex challenge for them mainly due to their limited coverage, with GPT-4 only able to cover under 40% of the diverse information on average.
Submission history
From: Kung-Hsiang Huang [view email][v1] Sun, 17 Sep 2023 20:28:17 UTC (9,087 KB)
[v2] Fri, 22 Mar 2024 22:54:04 UTC (9,091 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.