Condensed Matter > Materials Science
[Submitted on 22 Aug 2023]
Title:Addressing the Accuracy-Cost Tradeoff in Material Property Prediction: A Teacher-Student Strategy
View PDFAbstract:Deep learning has revolutionized the process of new material discovery, with state-of-the-art models now able to predict material properties based solely on chemical compositions, thus eliminating the necessity for material structures. However, this cost-effective method has led to a trade-off in model accuracy. Specifically, the accuracy of Chemical Composition-based Property Prediction Models (CPMs) significantly lags behind that of Structure-based Property Prediction Models (SPMs). To tackle this challenge, we propose an innovative Teacher-Student (T-S) strategy, where a pre-trained SPM serves as the 'teacher' to enhance the accuracy of the CPM. Leveraging the T-S strategy, T-S CrabNet has risen to become the most accurate model among current CPMs. Initially, we demonstrated the universality of this strategy. On the Materials Project (MP) and Jarvis datasets, we validated the effectiveness of the T-S strategy in boosting the accuracy of CPMs with two distinct network structures, namely CrabNet and Roost. This led to CrabNet, under the guidance of the T-S strategy, emerging as the most accurate model among the current CPMs. Moreover, this strategy shows remarkable efficacy in small datasets. When predicting the formation energy on a small MP dataset comprising merely 5% of the samples, the T-S strategy boosted CrabNet's accuracy by 37.1%, exceeding the enhancement effect of the T-S strategy on the whole dataset.
Current browse context:
cond-mat.mtrl-sci
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.