Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 Aug 2023 (v1), last revised 16 Oct 2023 (this version, v2)]
Title:Improving Anomaly Segmentation with Multi-Granularity Cross-Domain Alignment
View PDFAbstract:Anomaly segmentation plays a pivotal role in identifying atypical objects in images, crucial for hazard detection in autonomous driving systems. While existing methods demonstrate noteworthy results on synthetic data, they often fail to consider the disparity between synthetic and real-world data domains. Addressing this gap, we introduce the Multi-Granularity Cross-Domain Alignment (MGCDA) framework, tailored to harmonize features across domains at both the scene and individual sample levels. Our contributions are twofold: i) We present the Multi-source Domain Adversarial Training module. This integrates a multi-source adversarial loss coupled with dynamic label smoothing, facilitating the learning of domain-agnostic representations across multiple processing stages. ii) We propose an innovative Cross-domain Anomaly-aware Contrastive Learning methodology.} This method adeptly selects challenging anchor points and images using an anomaly-centric strategy, ensuring precise alignment at the sample level. Extensive evaluations of the Fishyscapes and RoadAnomaly datasets demonstrate MGCDA's superior performance and adaptability. Additionally, its ability to perform parameter-free inference and function with various network architectures highlights its distinctiveness in advancing the frontier of anomaly segmentation.
Submission history
From: Zhi-Qi Cheng [view email][v1] Wed, 16 Aug 2023 22:54:49 UTC (10,810 KB)
[v2] Mon, 16 Oct 2023 16:12:09 UTC (10,811 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.