Computer Science > Cryptography and Security
[Submitted on 8 Aug 2023]
Title:model-based script synthesis for fuzzing
View PDFAbstract:Kernel fuzzing is important for finding critical kernel vulnerabilities. Close-source (e.g., Windows) operating system kernel fuzzing is even more challenging due to the lack of source code. Existing approaches fuzz the kernel by modeling syscall sequences from traces or static analysis of system codes. However, a common limitation is that they do not learn and mutate the syscall sequences to reach different kernel states, which can potentially result in more bugs or crashes.
In this paper, we propose WinkFuzz, an approach to learn and mutate traced syscall sequences in order to reach different kernel states. WinkFuzz learns syscall dependencies from the trace, identifies potential syscalls in the trace that can have dependent subsequent syscalls, and applies the dependencies to insert more syscalls while preserving the dependencies into the trace. Then WinkFuzz fuzzes the synthesized new syscall sequence to find system crashes.
We applied WinkFuzz to four seed applications and found a total increase in syscall number of 70.8\%, with a success rate of 61\%, within three insert levels. The average time for tracing, dependency analysis, recovering model script, and synthesizing script was 600, 39, 34, and 129 seconds respectively. The instant fuzzing rate is 3742 syscall executions per second. However, the average fuzz efficiency dropped to 155 syscall executions per second when the initializing time, waiting time, and other factors were taken into account. We fuzzed each seed application for 24 seconds and, on average, obtained 12.25 crashes within that time frame.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.