High Energy Physics - Phenomenology
[Submitted on 4 Aug 2023 (v1), last revised 1 Nov 2023 (this version, v2)]
Title:A multistage framework for studying the evolution of jets and high-$p_T$ probes in small collision systems
View PDFAbstract:Understanding the modification of jets and high-$p_T$ probes in small systems requires the integration of soft and hard physics. We present recent developments in extending the JETSCAPE framework to build an event generator, which includes correlations between soft and hard partons, to study jet observables in small systems. The multi-scale physics of the collision is separated into different stages. Hard scatterings are first sampled at binary collision positions provided by the Glauber geometry. They are then propagated backward in space-time following an initial-state shower to obtain the initiating partons' energies and momenta before the collision. These energies and momenta are then subtracted from the incoming colliding nucleons for soft-particle production, modeled by the 3D-Glauber + hydrodynamics + hadronic transport framework. This new hybrid approach (X-SCAPE) includes non-trivial correlations between jet and soft particle productions in small systems. We calibrate this framework with the final state hadrons' $p_T$-spectra from low to high $p_T$ in $p$-$p$, and and then compare with the spectra in $p$-$Pb$ collisions from the LHC. We also present results for additional observables such as the distributions of event activity as a function of the hardest jet $p_T$ in forward and mid-rapidity for both $p$-$p$ and $p$-$Pb$ collisions.
Submission history
From: Abhijit Majumder [view email][v1] Fri, 4 Aug 2023 18:11:33 UTC (467 KB)
[v2] Wed, 1 Nov 2023 14:10:04 UTC (467 KB)
Current browse context:
hep-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.