Computer Science > Robotics
[Submitted on 20 Jul 2023]
Title:Probabilistic Multimodal Depth Estimation Based on Camera-LiDAR Sensor Fusion
View PDFAbstract:Multi-modal depth estimation is one of the key challenges for endowing autonomous machines with robust robotic perception capabilities. There have been outstanding advances in the development of uni-modal depth estimation techniques based on either monocular cameras, because of their rich resolution, or LiDAR sensors, due to the precise geometric data they provide. However, each of these suffers from some inherent drawbacks, such as high sensitivity to changes in illumination conditions in the case of cameras and limited resolution for the LiDARs. Sensor fusion can be used to combine the merits and compensate for the downsides of these two kinds of sensors. Nevertheless, current fusion methods work at a high level. They process the sensor data streams independently and combine the high-level estimates obtained for each sensor. In this paper, we tackle the problem at a low level, fusing the raw sensor streams, thus obtaining depth estimates which are both dense and precise, and can be used as a unified multi-modal data source for higher level estimation problems.
This work proposes a Conditional Random Field model with multiple geometry and appearance potentials. It seamlessly represents the problem of estimating dense depth maps from camera and LiDAR data. The model can be optimized efficiently using the Conjugate Gradient Squared algorithm. The proposed method was evaluated and compared with the state-of-the-art using the commonly used KITTI benchmark dataset.
Submission history
From: Johan Samir Obando Ceron [view email][v1] Thu, 20 Jul 2023 01:39:08 UTC (35,939 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.