Mathematics > Combinatorics
[Submitted on 14 Jul 2023]
Title:Universal lower bound for community structure of sparse graphs
View PDFAbstract:We prove new lower bounds on the modularity of graphs. Specifically, the modularity of a graph $G$ with average degree $\bar d$ is $\Omega(\bar{d}^{-1/2})$, under some mild assumptions on the degree sequence of $G$. The lower bound $\Omega(\bar{d}^{-1/2})$ applies, for instance, to graphs with a power-law degree sequence or a near-regular degree sequence.
It has been suggested that the relatively high modularity of the Erdős-Rényi random graph $G_{n,p}$ stems from the random fluctuations in its edge distribution, however our results imply high modularity for any graph with a degree sequence matching that typically found in $G_{n,p}$.
The proof of the new lower bound relies on certain weight-balanced bisections with few cross-edges, which build on ideas of Alon [Combinatorics, Probability and Computing (1997)] and may be of independent interest.
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.