Computer Science > Machine Learning
[Submitted on 13 Jul 2023]
Title:Cramer Type Distances for Learning Gaussian Mixture Models by Gradient Descent
View PDFAbstract:The learning of Gaussian Mixture Models (also referred to simply as GMMs) plays an important role in machine learning. Known for their expressiveness and interpretability, Gaussian mixture models have a wide range of applications, from statistics, computer vision to distributional reinforcement learning. However, as of today, few known algorithms can fit or learn these models, some of which include Expectation-Maximization algorithms and Sliced Wasserstein Distance. Even fewer algorithms are compatible with gradient descent, the common learning process for neural networks.
In this paper, we derive a closed formula of two GMMs in the univariate, one-dimensional case, then propose a distance function called Sliced Cramér 2-distance for learning general multivariate GMMs. Our approach has several advantages over many previous methods. First, it has a closed-form expression for the univariate case and is easy to compute and implement using common machine learning libraries (e.g., PyTorch and TensorFlow). Second, it is compatible with gradient descent, which enables us to integrate GMMs with neural networks seamlessly. Third, it can fit a GMM not only to a set of data points, but also to another GMM directly, without sampling from the target model. And fourth, it has some theoretical guarantees like global gradient boundedness and unbiased sampling gradient. These features are especially useful for distributional reinforcement learning and Deep Q Networks, where the goal is to learn a distribution over future rewards. We will also construct a Gaussian Mixture Distributional Deep Q Network as a toy example to demonstrate its effectiveness. Compared with previous models, this model is parameter efficient in terms of representing a distribution and possesses better interpretability.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.