Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Jun 2023]
Title:Video object detection for privacy-preserving patient monitoring in intensive care
View PDFAbstract:Patient monitoring in intensive care units, although assisted by biosensors, needs continuous supervision of staff. To reduce the burden on staff members, IT infrastructures are built to record monitoring data and develop clinical decision support systems. These systems, however, are vulnerable to artifacts (e.g. muscle movement due to ongoing treatment), which are often indistinguishable from real and potentially dangerous signals. Video recordings could facilitate the reliable classification of biosignals using object detection (OD) methods to find sources of unwanted artifacts. Due to privacy restrictions, only blurred videos can be stored, which severely impairs the possibility to detect clinically relevant events such as interventions or changes in patient status with standard OD methods. Hence, new kinds of approaches are necessary that exploit every kind of available information due to the reduced information content of blurred footage and that are at the same time easily implementable within the IT infrastructure of a normal hospital. In this paper, we propose a new method for exploiting information in the temporal succession of video frames. To be efficiently implementable using off-the-shelf object detectors that comply with given hardware constraints, we repurpose the image color channels to account for temporal consistency, leading to an improved detection rate of the object classes. Our method outperforms a standard YOLOv5 baseline model by +1.7% mAP@.5 while also training over ten times faster on our proprietary dataset. We conclude that this approach has shown effectiveness in the preliminary experiments and holds potential for more general video OD in the future.
Submission history
From: Raphael Emberger [view email][v1] Mon, 26 Jun 2023 11:52:22 UTC (3,547 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.