Computer Science > Information Theory
[Submitted on 23 Jun 2023 (v1), last revised 10 Aug 2023 (this version, v2)]
Title:On the Functions Which are CCZ-equivalent but not EA-equivalent to Quadratic Functions over $\mathbb F_{p^n}$
View PDFAbstract:For a given function $F$ from $\mathbb F_{p^n}$ to itself, determining whether there exists a function which is CCZ-equivalent but EA-inequivalent to $F$ is a very important and interesting problem. For example, Kölsch \cite{KOL21} showed that there is no function which is CCZ-equivalent but EA-inequivalent to the inverse function. On the other hand, for the cases of Gold function $F(x)=x^{2^i+1}$ and $F(x)=x^3+{\rm Tr}(x^9)$ over $\mathbb F_{2^n}$, Budaghyan, Carlet and Pott (respectively, Budaghyan, Carlet and Leander) \cite{BCP06, BCL09FFTA} found functions which are CCZ-equivalent but EA-inequivalent to $F$. In this paper, when a given function $F$ has a component function which has a linear structure, we present functions which are CCZ-equivalent to $F$, and if suitable conditions are satisfied, the constructed functions are shown to be EA-inequivalent to $F$. As a consequence, for every quadratic function $F$ on $\mathbb F_{2^n}$ ($n\geq 4$) with nonlinearity $>0$ and differential uniformity $\leq 2^{n-3}$, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to $F$. Also for every non-planar quadratic function on $\mathbb F_{p^n}$ $(p>2, n\geq 4)$ with $|\mathcal W_F|\leq p^{n-1}$ and differential uniformity $\leq p^{n-3}$, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to $F$.
Submission history
From: Soonhak Kwon [view email][v1] Fri, 23 Jun 2023 18:02:46 UTC (29 KB)
[v2] Thu, 10 Aug 2023 10:25:44 UTC (34 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.