Computer Science > Machine Learning
[Submitted on 15 Jun 2023 (v1), last revised 22 Jan 2024 (this version, v3)]
Title:Finite-Time Logarithmic Bayes Regret Upper Bounds
View PDF HTML (experimental)Abstract:We derive the first finite-time logarithmic Bayes regret upper bounds for Bayesian bandits. In a multi-armed bandit, we obtain $O(c_\Delta \log n)$ and $O(c_h \log^2 n)$ upper bounds for an upper confidence bound algorithm, where $c_h$ and $c_\Delta$ are constants depending on the prior distribution and the gaps of bandit instances sampled from it, respectively. The latter bound asymptotically matches the lower bound of Lai (1987). Our proofs are a major technical departure from prior works, while being simple and general. To show the generality of our techniques, we apply them to linear bandits. Our results provide insights on the value of prior in the Bayesian setting, both in the objective and as a side information given to the learner. They significantly improve upon existing $\tilde{O}(\sqrt{n})$ bounds, which have become standard in the literature despite the logarithmic lower bound of Lai (1987).
Submission history
From: Branislav Kveton [view email][v1] Thu, 15 Jun 2023 13:49:30 UTC (100 KB)
[v2] Fri, 3 Nov 2023 08:47:16 UTC (84 KB)
[v3] Mon, 22 Jan 2024 00:51:05 UTC (83 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.