Computer Science > Machine Learning
[Submitted on 14 Jun 2023 (v1), last revised 23 Sep 2024 (this version, v4)]
Title:Noise Stability Optimization for Finding Flat Minima: A Hessian-based Regularization Approach
View PDF HTML (experimental)Abstract:The training of over-parameterized neural networks has received much study in recent literature. An important consideration is the regularization of over-parameterized networks due to their highly nonconvex and nonlinear geometry. In this paper, we study noise injection algorithms, which can regularize the Hessian of the loss, leading to regions with flat loss surfaces. Specifically, by injecting isotropic Gaussian noise into the weight matrices of a neural network, we can obtain an approximately unbiased estimate of the trace of the Hessian. However, naively implementing the noise injection via adding noise to the weight matrices before backpropagation presents limited empirical improvements. To address this limitation, we design a two-point estimate of the Hessian penalty, which injects noise into the weight matrices along both positive and negative directions of the random noise. In particular, this two-point estimate eliminates the variance of the first-order Taylor's expansion term on the Hessian. We show a PAC-Bayes generalization bound that depends on the trace of the Hessian (and the radius of the weight space), which can be measured from data.
We conduct a detailed experimental study to validate our approach and show that it can effectively regularize the Hessian and improve generalization. First, our algorithm can outperform prior approaches on sharpness-reduced training, delivering up to a 2.4% test accuracy increase for fine-tuning ResNets on six image classification datasets. Moreover, the trace of the Hessian reduces by 15.8%, and the largest eigenvalue is reduced by 9.7% with our approach. We also find that the regularization of the Hessian can be combined with weight decay and data augmentation, leading to stronger regularization. Second, our approach remains effective for improving generalization in pretraining multimodal CLIP models and chain-of-thought fine-tuning.
Submission history
From: Hongyang Zhang [view email][v1] Wed, 14 Jun 2023 14:58:36 UTC (1,025 KB)
[v2] Sun, 1 Oct 2023 20:06:26 UTC (1,009 KB)
[v3] Thu, 18 Apr 2024 23:59:01 UTC (1,716 KB)
[v4] Mon, 23 Sep 2024 16:52:43 UTC (2,355 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.