Computer Science > Human-Computer Interaction
[Submitted on 5 Jun 2023]
Title:AHA!: Facilitating AI Impact Assessment by Generating Examples of Harms
View PDFAbstract:While demands for change and accountability for harmful AI consequences mount, foreseeing the downstream effects of deploying AI systems remains a challenging task. We developed AHA! (Anticipating Harms of AI), a generative framework to assist AI practitioners and decision-makers in anticipating potential harms and unintended consequences of AI systems prior to development or deployment. Given an AI deployment scenario, AHA! generates descriptions of possible harms for different stakeholders. To do so, AHA! systematically considers the interplay between common problematic AI behaviors as well as their potential impacts on different stakeholders, and narrates these conditions through vignettes. These vignettes are then filled in with descriptions of possible harms by prompting crowd workers and large language models. By examining 4113 harms surfaced by AHA! for five different AI deployment scenarios, we found that AHA! generates meaningful examples of harms, with different problematic AI behaviors resulting in different types of harms. Prompting both crowds and a large language model with the vignettes resulted in more diverse examples of harms than those generated by either the crowd or the model alone. To gauge AHA!'s potential practical utility, we also conducted semi-structured interviews with responsible AI professionals (N=9). Participants found AHA!'s systematic approach to surfacing harms important for ethical reflection and discovered meaningful stakeholders and harms they believed they would not have thought of otherwise. Participants, however, differed in their opinions about whether AHA! should be used upfront or as a secondary-check and noted that AHA! may shift harm anticipation from an ideation problem to a potentially demanding review problem. Drawing on our results, we discuss design implications of building tools to help practitioners envision possible harms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.