Computer Science > Computation and Language
[Submitted on 1 Jun 2023]
Title:Contextual Distortion Reveals Constituency: Masked Language Models are Implicit Parsers
View PDFAbstract:Recent advancements in pre-trained language models (PLMs) have demonstrated that these models possess some degree of syntactic awareness. To leverage this knowledge, we propose a novel chart-based method for extracting parse trees from masked language models (LMs) without the need to train separate parsers. Our method computes a score for each span based on the distortion of contextual representations resulting from linguistic perturbations. We design a set of perturbations motivated by the linguistic concept of constituency tests, and use these to score each span by aggregating the distortion scores. To produce a parse tree, we use chart parsing to find the tree with the minimum score. Our method consistently outperforms previous state-of-the-art methods on English with masked LMs, and also demonstrates superior performance in a multilingual setting, outperforming the state of the art in 6 out of 8 languages. Notably, although our method does not involve parameter updates or extensive hyperparameter search, its performance can even surpass some unsupervised parsing methods that require fine-tuning. Our analysis highlights that the distortion of contextual representation resulting from syntactic perturbation can serve as an effective indicator of constituency across languages.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.