Quantum Physics
[Submitted on 29 May 2023 (v1), last revised 2 Sep 2024 (this version, v3)]
Title:State-Blocking Side-Channel Attacks and Autonomous Fault Detection in Quantum Key Distribution
View PDF HTML (experimental)Abstract:Side-channel attacks allow an Eavesdropper to use insecurities in the practical implementation of QKD systems to gain an advantage that is not considered by security proofs that assume perfect implementations. In this work we specify a side-channel capability for Eve that has yet to be considered, before then going on to discuss a scheme to autonomously detect such an attack during an ongoing QKD session, and the limits as to how fast a detection can be made. The side-channel capability is very general and covers a wide variety of possible implementations for the attack itself. We present how Alice and Bob can put in place a countermeasure to continue use of the QKD system, once a detection is made, regardless of the ongoing side-channel attack. This prevents downtime of QKD systems, which in critical infrastructure could pose severe risks. We then extend Eves side-channel capability and present a modified attack strategy. This strengthened attack can be detected under certain conditions by our scheme, however intelligent choices of parameters from Eve allow her strengthened attack to go undetected. From this, we discuss the implications this has on Privacy Amplification, and therefore on the security of QKD as a whole. Finally, consideration is given as to how these types of attacks are analogous to certain types of faults in the QKD system, how our detection scheme can also detect these faults, and therefore how this adds autonomous fault detection and redundancy to implementations of QKD.
Submission history
From: Matt Young [view email][v1] Mon, 29 May 2023 10:43:57 UTC (127 KB)
[v2] Tue, 30 May 2023 14:08:46 UTC (1 KB) (withdrawn)
[v3] Mon, 2 Sep 2024 21:44:57 UTC (295 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.