Computer Science > Computer Vision and Pattern Recognition
[Submitted on 16 May 2023 (v1), last revised 17 May 2023 (this version, v2)]
Title:Releasing Inequality Phenomena in $L_{\infty}$-Adversarial Training via Input Gradient Distillation
View PDFAbstract:Since adversarial examples appeared and showed the catastrophic degradation they brought to DNN, many adversarial defense methods have been devised, among which adversarial training is considered the most effective. However, a recent work showed the inequality phenomena in $l_{\infty}$-adversarial training and revealed that the $l_{\infty}$-adversarially trained model is vulnerable when a few important pixels are perturbed by i.i.d. noise or occluded. In this paper, we propose a simple yet effective method called Input Gradient Distillation (IGD) to release the inequality phenomena in $l_{\infty}$-adversarial training. Experiments show that while preserving the model's adversarial robustness, compared to PGDAT, IGD decreases the $l_{\infty}$-adversarially trained model's error rate to inductive noise and inductive occlusion by up to 60\% and 16.53\%, and to noisy images in Imagenet-C by up to 21.11\%. Moreover, we formally explain why the equality of the model's saliency map can improve such robustness.
Submission history
From: Junxi Chen [view email][v1] Tue, 16 May 2023 09:23:42 UTC (8,577 KB)
[v2] Wed, 17 May 2023 15:03:17 UTC (13,459 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.