Computer Science > Computer Vision and Pattern Recognition
[Submitted on 27 Apr 2023 (v1), last revised 12 Dec 2023 (this version, v2)]
Title:MCLFIQ: Mobile Contactless Fingerprint Image Quality
View PDF HTML (experimental)Abstract:We propose MCLFIQ: Mobile Contactless Fingerprint Image Quality, the first quality assessment algorithm for mobile contactless fingerprint samples. To this end, we re-trained the NIST Fingerprint Image Quality (NFIQ) 2 method, which was originally designed for contact-based fingerprints, with a synthetic contactless fingerprint database. We evaluate the predictive performance of the resulting MCLFIQ model in terms of Error-vs.-Discard Characteristic (EDC) curves on three real-world contactless fingerprint databases using three recognition algorithms. In experiments, the MCLFIQ method is compared against the original NFIQ 2.2 method, a sharpness-based quality assessment algorithm developed for contactless fingerprint images \rev{and the general purpose image quality assessment method BRISQUE. Furthermore, benchmarks on four contact-based fingerprint datasets are also conducted.}
Obtained results show that the fine-tuning of NFIQ 2 on synthetic contactless fingerprints is a viable alternative to training on real databases. Moreover, the evaluation shows that our MCLFIQ method works more accurate and robust compared to all baseline methods on contactless fingerprints. We suggest considering the proposed MCLFIQ method as a \rev{starting point for the development of} a new standard algorithm for contactless fingerprint quality assessment.
Submission history
From: Jannis Priesnitz [view email][v1] Thu, 27 Apr 2023 12:17:23 UTC (17,394 KB)
[v2] Tue, 12 Dec 2023 09:45:00 UTC (18,511 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.