Condensed Matter > Strongly Correlated Electrons
[Submitted on 18 Apr 2023 (v1), last revised 1 Sep 2023 (this version, v2)]
Title:Linear scaling relationship of Néel temperature and dominant magnons in pyrochlore ruthenates
View PDFAbstract:We present a systematic Raman spectroscopy study on a series of pyrochlore ruthenates, a system which is not yet clearly settled on its magnetic origin and structure. Apart from the Raman-active phonon modes, new peaks that appear in the energy range of 15 - 35 meV below the Néel temperature are assigned as one-magnon modes. The temperature evolution of one-magnon modes displays no significant thermal dependence in mode frequencies while the intensities decrease monotonically. Remarkably, one-magnons from all compounds show similar characteristics with a single dominant peak at lower energy and weaker side peaks at a couple of meV higher energy. Most importantly, we uncover a striking proportionality between the dominant magnon mode energies and the Néel temperature values. Our results suggest the Ru ions may have similar or the same magnetic phase in all pyrochlore ruthenates of our study. We have thus found an avenue for directly tuning the magnetic exchange interaction by the selection of the $A$-site ion.
Submission history
From: Jae Hyuck Lee [view email][v1] Tue, 18 Apr 2023 08:26:10 UTC (767 KB)
[v2] Fri, 1 Sep 2023 12:39:41 UTC (445 KB)
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.