Computer Science > Robotics
[Submitted on 17 Apr 2023]
Title:ATTACH Dataset: Annotated Two-Handed Assembly Actions for Human Action Understanding
View PDFAbstract:With the emergence of collaborative robots (cobots), human-robot collaboration in industrial manufacturing is coming into focus. For a cobot to act autonomously and as an assistant, it must understand human actions during assembly. To effectively train models for this task, a dataset containing suitable assembly actions in a realistic setting is crucial. For this purpose, we present the ATTACH dataset, which contains 51.6 hours of assembly with 95.2k annotated fine-grained actions monitored by three cameras, which represent potential viewpoints of a cobot. Since in an assembly context workers tend to perform different actions simultaneously with their two hands, we annotated the performed actions for each hand separately. Therefore, in the ATTACH dataset, more than 68% of annotations overlap with other annotations, which is many times more than in related datasets, typically featuring more simplistic assembly tasks. For better generalization with respect to the background of the working area, we did not only record color and depth images, but also used the Azure Kinect body tracking SDK for estimating 3D skeletons of the worker. To create a first baseline, we report the performance of state-of-the-art methods for action recognition as well as action detection on video and skeleton-sequence inputs. The dataset is available at this https URL .
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.