Computer Science > Computation and Language
[Submitted on 14 Mar 2023]
Title:Learning Cross-lingual Visual Speech Representations
View PDFAbstract:Cross-lingual self-supervised learning has been a growing research topic in the last few years. However, current works only explored the use of audio signals to create representations. In this work, we study cross-lingual self-supervised visual representation learning. We use the recently-proposed Raw Audio-Visual Speech Encoders (RAVEn) framework to pre-train an audio-visual model with unlabelled multilingual data, and then fine-tune the visual model on labelled transcriptions. Our experiments show that: (1) multi-lingual models with more data outperform monolingual ones, but, when keeping the amount of data fixed, monolingual models tend to reach better performance; (2) multi-lingual outperforms English-only pre-training; (3) using languages which are more similar yields better results; and (4) fine-tuning on unseen languages is competitive to using the target language in the pre-training set. We hope our study inspires future research on non-English-only speech representation learning.
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.