Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 3 Mar 2023]
Title:An investigation into the adaptability of a diffusion-based TTS model
View PDFAbstract:Given the recent success of diffusion in producing natural-sounding synthetic speech, we investigate how diffusion can be used in speaker adaptive TTS. Taking cues from more traditional adaptation approaches, we show that adaptation can be included in a diffusion pipeline using conditional layer normalization with a step embedding. However, we show experimentally that, whilst the approach has merit, such adaptation alone cannot approach the performance of Transformer-based techniques. In a second experiment, we show that diffusion can be optimally combined with Transformer, with the latter taking the bulk of the adaptation load and the former contributing to improved naturalness.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.