Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Mar 2023]
Title:P$^2$SDF for Neural Indoor Scene Reconstruction
View PDFAbstract:Given only a set of images, neural implicit surface representation has shown its capability in 3D surface reconstruction. However, as the nature of per-scene optimization is based on the volumetric rendering of color, previous neural implicit surface reconstruction methods usually fail in low-textured regions, including the floors, walls, etc., which commonly exist for indoor scenes. Being aware of the fact that these low-textured regions usually correspond to planes, without introducing additional ground-truth supervisory signals or making additional assumptions about the room layout, we propose to leverage a novel Pseudo Plane-regularized Signed Distance Field (P$^2$SDF) for indoor scene reconstruction. Specifically, we consider adjacent pixels with similar colors to be on the same pseudo planes. The plane parameters are then estimated on the fly during training by an efficient and effective two-step scheme. Then the signed distances of the points on the planes are regularized by the estimated plane parameters in the training phase. As the unsupervised plane segments are usually noisy and inaccurate, we propose to assign different weights to the sampled points on the plane in plane estimation as well as the regularization loss. The weights come by fusing the plane segments from different views. As the sampled rays in the planar regions are redundant, leading to inefficient training, we further propose a keypoint-guided rays sampling strategy that attends to the informative textured regions with large color variations, and the implicit network gets a better reconstruction, compared with the original uniform ray sampling strategy. Experiments show that our P$^2$SDF achieves competitive reconstruction performance in Manhattan scenes. Further, as we do not introduce any additional room layout assumption, our P$^2$SDF generalizes well to the reconstruction of non-Manhattan scenes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.