Computer Science > Computation and Language
[Submitted on 23 Feb 2023]
Title:Sentence Simplification via Large Language Models
View PDFAbstract:Sentence Simplification aims to rephrase complex sentences into simpler sentences while retaining original meaning. Large Language models (LLMs) have demonstrated the ability to perform a variety of natural language processing tasks. However, it is not yet known whether LLMs can be served as a high-quality sentence simplification system. In this work, we empirically analyze the zero-/few-shot learning ability of LLMs by evaluating them on a number of benchmark test sets. Experimental results show LLMs outperform state-of-the-art sentence simplification methods, and are judged to be on a par with human annotators.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.