Computer Science > Cryptography and Security
[Submitted on 20 Feb 2023]
Title:Variation Enhanced Attacks Against RRAM-based Neuromorphic Computing System
View PDFAbstract:The RRAM-based neuromorphic computing system has amassed explosive interests for its superior data processing capability and energy efficiency than traditional architectures, and thus being widely used in many data-centric applications. The reliability and security issues of the NCS therefore become an essential problem. In this paper, we systematically investigated the adversarial threats to the RRAM-based NCS and observed that the RRAM hardware feature can be leveraged to strengthen the attack effect, which has not been granted sufficient attention by previous algorithmic attack methods. Thus, we proposed two types of hardware-aware attack methods with respect to different attack scenarios and objectives. The first is adversarial attack, VADER, which perturbs the input samples to mislead the prediction of neural networks. The second is fault injection attack, EFI, which perturbs the network parameter space such that a specified sample will be classified to a target label, while maintaining the prediction accuracy on other samples. Both attack methods leverage the RRAM properties to improve the performance compared with the conventional attack methods. Experimental results show that our hardware-aware attack methods can achieve nearly 100% attack success rate with extremely low operational cost, while maintaining the attack stealthiness.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.