Astrophysics > Astrophysics of Galaxies
[Submitted on 7 Feb 2023]
Title:Spectroscopic analysis of Milky Way outer halo satellites: Aquarius II and Bootes II
View PDFAbstract:In this paper we present a chemical and kinematic analysis of two ultra-faint dwarf galaxies (UFDs), Aquarius II (Aqu~II) and \text{Boötes II} (Boo~II), using Magellan/IMACS spectroscopy. We present the largest sample of member stars for Boo~II (12), and the largest sample of red-giant-branch members with metallicity measurements for Aqu~II (8). In both UFDs, over 80\% of targets selected based on $Gaia$ proper motions turned out to be spectroscopic members. In order to maximize the accuracy of stellar kinematic measurements, we remove the identified binary stars and RR Lyrae variables. For Aqu~II we measure a systemic velocity of $-65.3 \pm 1.8$ km s$^{-1}$ and a metallicity of [Fe/H] = $-2.57^{+0.17}_{-0.17}$. When compared with previous measurements, these values display a $\sim 6$ km s$^{-1}$ difference in radial velocity and a decrease of 0.27 dex in metallicity. Similarly for Boo~II, we measure a systemic velocity of $-130.4^{+1.4}_{-1.1}$ km s$^{-1}$, more than 10 km s$^{-1}$ different from the literature, a metallicity almost 1 dex smaller at [Fe/H] = $-2.71^{+0.11}_{-0.10}$, and a velocity dispersion 3 times smaller at $\sigma_{v_{\rm hel}} = 2.9^{+1.6}_{-1.2}$ km s$^{-1}$. Additionally, we derive systemic proper motion parameters and model the orbits of both UFDs. Finally, we highlight the extremely dark matter dominated nature of Aqu~II and compute the J-factor for both galaxies to aid searches of dark matter annihilation. Despite the small size and close proximity of Boo~II, it is an intermediate target for the indirect detection of dark matter annihilation due to its low velocity dispersion and corresponding low dark matter density.
Current browse context:
astro-ph.GA
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.