Condensed Matter > Strongly Correlated Electrons
[Submitted on 5 Feb 2023]
Title:Kondo frustration via charge fluctuations: a route to Mott localisation
View PDFAbstract:We propose a minimal effective impurity model that captures the phenomenology of the Mott-Hubbard metal-insulator transition (MIT) of the half-filled Hubbard model on the Bethe lattice in infinite dimensions as observed by dynamical mean field theory (DMFT). This involves extending the standard Anderson impurity model Hamiltonian to include an explicit Kondo coupling $J$, as well as a local on-site correlation $U_b$ on the conduction bath site connected directly to the impurity. For the case of attractive local bath correlations ($U_{b}<0$), the extended Anderson impurity model (e-SIAM) sheds new light on several aspects of the DMFT phase diagram. For example, the $T=0$ metal-to-insulator quantum phase transition (QPT) is preceded by an excited state quantum phase transition (ESQPT) where the local moment eigenstates are emergent in the low-lying spectrum. Long-ranged fluctuations are observed near both the QPT and ESQPT, suggesting that they are the origin of the quantum critical scaling observed recently at high temperatures in DMFT simulations. The $T=0$ gapless excitations at the QCP display particle-hole interconversion processes, and exhibit power-law behaviour in self-energies and two-particle correlations. These are signatures of non-Fermi liquid behaviour that emerge from the partial breakdown of the Kondo screening.
Submission history
From: Abhirup Mukherjee [view email][v1] Sun, 5 Feb 2023 07:48:25 UTC (3,034 KB)
Current browse context:
cond-mat.str-el
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.