Computer Science > Hardware Architecture
[Submitted on 25 Jan 2023]
Title:Flexagon: A Multi-Dataflow Sparse-Sparse Matrix Multiplication Accelerator for Efficient DNN Processing
View PDFAbstract:Sparsity is a growing trend in modern DNN models. Existing Sparse-Sparse Matrix Multiplication (SpMSpM) accelerators are tailored to a particular SpMSpM dataflow (i.e., Inner Product, Outer Product or Gustavsons), that determines their overall efficiency. We demonstrate that this static decision inherently results in a suboptimal dynamic solution. This is because different SpMSpM kernels show varying features (i.e., dimensions, sparsity pattern, sparsity degree), which makes each dataflow better suited to different data sets. In this work we present Flexagon, the first SpMSpM reconfigurable accelerator that is capable of performing SpMSpM computation by using the particular dataflow that best matches each case. Flexagon accelerator is based on a novel Merger-Reduction Network (MRN) that unifies the concept of reducing and merging in the same substrate, increasing efficiency. Additionally, Flexagon also includes a 3-tier memory hierarchy, specifically tailored to the different access characteristics of the input and output compressed matrices. Using detailed cycle-level simulation of contemporary DNN models from a variety of application domains, we show that Flexagon achieves average performance benefits of 4.59x, 1.71x, and 1.35x with respect to the state-of-the-art SIGMA-like, Sparch-like and GAMMA-like accelerators (265% , 67% and 18%, respectively, in terms of average performance/area efficiency).
Submission history
From: Francisco Muñoz-Martínez [view email][v1] Wed, 25 Jan 2023 22:24:00 UTC (1,622 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.